实现基于蚁群算法的TSP问题求解的Python代码:
```python
import random
class Ant:
def __init__(self, num_cities):
self.num_cities = num_cities
self.path = []
self.visited = [False] * num_cities
self.current_city = random.randint(0, num_cities-1)
self.path.append(self.current_city)
self.visited[self.current_city] = True
def choose_next_city(self, pheromone_matrix, alpha, beta):
probabilities = []
total_prob = 0.0
for city in range(self.num_cities):
if not self.visited[city]:
pheromone = pheromone_matrix[self.current_city][city]
attractiveness = 1.0 / distance_matrix[self.current_city][city]
probabilities.append(pheromone ** alpha * attractiveness ** beta)
total_prob += probabilities[-1]
if total_prob > 0.0:
rand = random.uniform(0, total_prob)
cum_prob = 0.0
for i, prob in enumerate(probabilities):
cum_prob += prob
if cum_prob >= rand:
self.current_city = i
self.visited[i] = True
self.path.append(i)
break
def path_length(self):
length = 0.0
for i in range(self.num_cities - 1):
length += distance_matrix[self.path[i]][self.path[i+1]]
length += distance_matrix[self.path[-1]][self.path[0]]
return length
class ACO:
def __init__(self, num_ants, num_iterations, alpha, beta, rho, Q):
self.num_ants = num_ants
self.num_iterations = num_iterations
self.alpha = alpha # 控制信息素的重要程度
self.beta = beta # 控制启发式信息的重要程度
self.rho = rho # 信息素挥发速度
self.Q = Q # 常系数
self.best_path = []
self.best_path_length = float('inf')
def solve(self, distance_matrix):
global distance_matrix
num_cities = len(distance_matrix)
pheromone_matrix = [[1.0 / num_cities] * num_cities for _ in range(num_cities)]
for iteration in range(self.num_iterations):
ants = [Ant(num_cities) for _ in range(self.num_ants)]
for ant in ants:
for _ in range(num_cities - 1):
ant.choose_next_city(pheromone_matrix, self.alpha, self.beta)
length = ant.path_length()
if length < self.best_path_length:
self.best_path = ant.path
self.best_path_length = length
self.update_pheromone(pheromone_matrix)
def update_pheromone(self, pheromone_matrix):
for i in range(len(pheromone_matrix)):
for j in range(len(pheromone_matrix[i])):
pheromone_matrix[i][j] *= self.rho
for ant in self.num_ants:
for i in range(len(ant.path) - 1):
pheromone_matrix[ant.path[i]][ant.path[i+1]] += self.Q / ant.path_length()
for i in range(len(pheromone_matrix)):
for j in range(len(pheromone_matrix[i])):
pheromone_matrix[i][j] = min(pheromone_matrix[i][j], 2.0)
if __name__ == '__main__':
distance_matrix = [
[0, 29, 20, 21, 16, 31, 100, 12, 4, 31, 18, 19, 8, 25, 20],
[29, 0, 15, 29, 28, 40, 72, 21, 29, 41, 12, 11, 34, 13, 25],
[20, 15, 0, 15, 14, 25, 81, 9, 23, 27, 13, 12, 21, 18, 16],
[21, 29, 15, 0, 4, 12, 92, 12, 25, 13, 25, 13, 24, 20, 25],
[16, 28, 14, 4, 0, 16, 94, 9, 20, 16, 22, 9, 20, 24, 20],
[31, 40, 25, 12, 16, 0, 95, 24, 36, 33, 37, 26, 28, 39, 35],
[100, 72, 81, 92, 94, 95, 0, 90, 101, 99, 84, 89, 88, 97, 94],
[12, 21, 9, 12, 9, 24, 90, 0, 15, 25, 13, 21, 12, 2, 12],
[4, 29, 23, 25, 20, 36, 101, 15, 0, 35, 18, 17, 28, 12, 25],
[31, 41, 27, 13, 16, 33, 99, 25, 35, 0, 32, 18, 30, 21, 46],
[18, 12, 13, 25, 22, 37, 84, 13, 18, 32, 0, 9, 26, 14, 29],
[19, 11, 12, 13, 9, 26, 89, 21, 17, 18, 9, 0, 22, 12, 27],
[8, 34, 21, 24, 20, 28, 88, 12, 28, 30, 26, 22, 0, 25, 10],
[25, 3, 18, 20, 24, 39, 97, 2, 12, 21, 14, 12, 25, 0, 15],
[20, 25, 16, 25, 20, 35, 94, 12, 25, 46, 29, 27, 10, 15, 0]
]
num_ants = 10
num_iterations = 100
alpha = 1.0
beta = 2.0
rho = 0.5
Q = 100.0
aco = ACO(num_ants, num_iterations, alpha, beta, rho, Q)
aco.solve(distance_matrix)
print("Best Path:", aco.best_path)
print("Best Path Length:", aco.best_path_length)
```
这是一个用Python实现的蚁群算法求解TSP(旅行商问题)的代码。TSP问题是在给定一组城市和城市之间的距离,找到一条经过每个城市恰好一次的最短路径。
蚁群算法是一种基于模拟蚂蚁行为的启发式搜索算法。它模拟了真实蚂蚁在寻找食物的过程中释放信息素、找到最短路径的行为。蚁群算法通过蚂蚁的行为与信息素更新来逐步搜索空间,并最终找到最优解。
在这段代码中,Ant类表示一个蚂蚁的属性和行为。初始化时,蚂蚁随机选择一个起始城市,并将其设置为已访问。然后,它通过选择下一个要访问的城市来决定下一步的行动。选择的城市是基于信息素和启发式信息计算得出的概率。概率越高,选择的可能性就越大。选择完成后,更新路径和已访问城市的信息。
ACO类表示整个蚁群算法的过程。它具有解决TSP问题的方法solve和更新信息素的方法update_pheromone。在solve方法中,先生成一组蚂蚁,然后每个蚂蚁根据信息素和启发式信息选择下一个要访问的城市,直到所有城市都被访问完毕。在每次迭代中,记录最优路径和路径长度。在update_pheromone方法中,对信息素进行更新,包括挥发信息素和释放信息素。更新后的信息素还要进行限制,以确保不超过一定范围。
通过调整参数,如蚂蚁数量、迭代次数、信息素重要程度和启发式信息重要程度等,可以进一步改进算法的性能和结果。这就是蚁群算法的优势之一,它是一种自适应的算法,能够根据问题和数据进行调整。
总结起来,蚁群算法是一种基于蚂蚁行为的启发式搜索算法,适用于TSP问题等组合优化问题的求解。它通过模拟蚂蚁的行为和信息素更新来搜索解空间,最终找到最优解。蚁群算法的实现可以通过编写类似上述代码的程序来完成。 如果你喜欢我们三七知识分享网站的文章, 欢迎您分享或收藏知识分享网站文章 欢迎您到我们的网站逛逛喔!https://www.ynyuzhu.com/
发表评论 取消回复